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This paper deals with explicit second-order accurate schemes for solving quasilinear 
hyperbolic equations with two spatial dimensions. The effect of certain stabilizing terms 
that allow a larger time step is studied and numerical examples are given, taking into 
account the simplicity of the schemes so as to shorten the actual computing time. 

The numerical solution of nonlinear initial value problems in more than one 
spatial dimension can cause severe problems of computing time, especially if 

second-order accuracy is desired. 

We will first deal with hyperbolic systems of the form 

W, = A . W, + B. W,, 

where A and B depend on the components of W so that 

A(W) W, = F, , B(W) W, = G,; 

in other words (1) is a system of conservation laws. The equations of compressible 
fluid dynamics are an example for such a system. When examining linear stability 

A and B will be taken as constant matrices. We will assume that A and B can be 
symmetrized by the same similarity transformation so that our system (1) is 

guaranteed to be hyperbolic. 

. The basic explicit second-order accuracy scheme for solving (1) with given 

* This research has heen sponsored in part by the Air Force Office of Scientific Research 
(NAM) through the European Office of Aerospace Research AFSC, U. S. Aire Force, under 
contract F611052-69-C-0041. 

1 The computations reported herein were carried out on the CDC-6600 computer at the 
Tel-Aviv University Computation Center. 
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initial data is the Lax-Wendroff method [6]. This method uses the fact that (I) 
and (2) lead to 

The Lax-Wendroff scheme will be denoted by S, , namely, 

w,‘z = Sl w/L , (4) 

where W?y, = W(t, , xi, y,,J. Using the notations 

u = largest eigenvalue of A or B, 
h = At/h, 

and taking h = dx = dy, 

the stability requirement for S, is given [6] by, 

In the special case where A and B commute, ur replaces (T in (5) where 

01 = max [(ai + biz)/2]1’2, (6) 

and where ai and bi are the corresponding eigenvalues of A and B. We will refer 
in some cases to the situation where AB = BA knowing fully well that we lose 
generality but on the other hand we gain easier insight into the problems since we 
are able to apply the spectral mapping theorem. 

We will also use the notation 

u2 = [$(A2 + B2)]1/2, (6’) 

where p(A) and p(B) are the spectral radii of A and B, and where, obviously, 
U] < L72 < u. 

In addition to the maximal stable h we will be interested in a simplicity number r, 
denoting the number of times that the functions F and G are computed for each 
net point. This number r is indeed some measure of the simplicity of a scheme, as 
pointed out by Strang [IO], since F and G can be complicated computationally 
and since the quantity r/h turns out to be significant as far as computing time is 
concerned. For the Lax-Wendroff scheme, S, , the number r is at least 15 (scalar 
case) and (9 + 6~7) for a system of p equations. This is so because six matrix 
evaluations are needed in S, , and for a system of order p, such a matrix com- 
putation is roughly equivalent to p evaluations of the vector functions F or G. 
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EVEN STABILIZERS 

In their paper [6], Lax and Wendroff suggested adding to their scheme a 
stabilizing term which is the centered finite-difference representation of 

-(P/8) h4(A2 + B2) W,,,, . (7) 

This term allows a larger time step so that only 

is required for linear stability, namely a gain of at least 2/2 in dt is achieved. 
Here again u1 can replace u2 if A and B commute. We will refer to terms like (7) 
as “even stabilizers” since they use derivatives of even orders, hence contributing 
only to the real part of the corresponding amplification matrix G. The scheme S, 
combined with (7) will be denoted by S,. The corresponding amplification matrices 
are (see [6]), 

G, = Z + i&A sin 5 + B sin T) + h2[A2(cos 5 - 1) + B2(cos r] - 1) 
- 1/2(AB + BA) sin ,$ sin 71, (9) 

G, = G, - l/2(A2 + B2)(l - cos f)( 1 - cos v) h4. 

Here A and B were taken to be locally constant and .$ and 7 are the dual variables 
after the usual Fourier transform. It should be noted that the stabilizer (7) uses 
only the same nine points that were already used by S, . 

Let us now take the special case where AB = BA. By the spectral mapping 
theorem the eigenvalues of G, and G, , i.e., g, and g, , are given by 

sin 6 sin 17 1 1 i 

+ ih(a sin t -t b sin y}, 

g, = g, - 1/2(a” + b2)(l - cos [)(I - cos 7) X4, 
(10) 

where a and b are corresponding eigenvalues of A and B. In order to meet the 
well-known Von-Neumann condition we must impose I g, I2 < 1 and / g, I2 < 1 
foralU~I;Irll < 7~. Now we observe that inequality 

{ZM[g1]}2 = A2{a sin .$ + b sin r)}2 < 1 (I 5 I; I v I < n> 
leads already to the stability requirement (8) with o1 replacing u2 . Consequently, 
since even stabilizers contribute only to the real part of the amplification matrix, 
we see that in a sense (7) is an optimal even stabilizer for S, . In order to further 
stabilize the Lax-Wendroff scheme, “odd stabilizers” are needed. 
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ODD STABILIZERS 

If we take only the real part of the amplification matrix G, and impose the 
Von-Neumann condition, we find for the case where A and B commute, 

x < l/v7!a,. (11) 

This means that an odd stabilizer that will yield the stability condition (11) when 
added to S, , is an optimal odd stabilizer in the above mentioned sense. 

We now claim that the centered finite-difference representation of 

(x3/4) h3[(AB2 + B24 Wz,, + @A2 + A2B) W,,,l (12) 

is such an optimal odd stabilizer. 
We start the proof by observing that (12) does not damage the second-order 

accuracy and that the scheme S, with (12) as a stabilizer is again a regular nine- 
point scheme. 

Now since (12) adds the term 

-(i/2) X3[(AB2 + B2A) sin f(l - cos r]) + (BA2 + A2B) sin ~(1 - cos c)] 

to G, we obtain for the Von-Neumann requirement the inequality, 

(13) 

4c2{a d@F m + 4 441 - a)l>” P2 
+ [4cW/32 + ((11 - cy?)“] p - [a” + c”p”] < 0, (14) 

a = sin2(t/2); /I = sin2(r]/2); 
c = b/a; p = h2a2. 

Again, we have assumed AB = BA so that the spectral-mapping theorem could be 
applied. 

Inequality (14) is a convex parabola in p having real roots of opposite signs and 
we want to show that for p0 = l/(1 + c2) the inequality still holds for all LX; 
P E w; 11. 

Substitution of p,, in (14) leads to 

[(a + p)Plv + c”) > 4%cf + c2p + 2443u - a)(1 - kw’“) (1% 

and of course it is enough to show that (15) holds for all CY; /3 E [O; l] if ($3) 
replaces [(a + /3)/212 on the left-hand side. 

We are now left with the inequality 

(1 - /3) c2 - 2[0$(1 - a)(1 - fi)]1/2 c + (1 - CL) > 0 (16) 
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which is easily seen to be true for every real c and all (Y; p E [O; 11, leading finally 
to the stability criteria (11) as claimed. The hyperbolicity of our system of equations 
guarantees that c is real. 

We do not suggest the stabilizer (13) for practical computations but we feel it 
clarifies the role of stabilizing terms at least for second-order accurate schemes. 

TWO-STEP SCHEMES 

Since our main interest is shortening the real computing time we next mention 
the two step schemes, first suggested by Richtmeyer [7]. These schemes do not 
perform any matrix calculations for the case of conservation laws and are therefore 
considerably faster. In [7] Richtmyer gives the following scheme 

fen = ~/4(WLJn + KLn + w&,, + w;,-l); 

the stability condition (for the case AB = BA) is 

h < 1/2a,. (18) 

Scheme (17), which will be denoted by S, , advances the time by 2dt while 
computing F and G only 8 times (i.e., r = 4 per At). However, as will be seen later, 
in order to get results as accurate as with S, or S, it is necessary to take a finer 
mesh. The reason for this is probably the “diamond-shaped” numerical domain 
of dependence and the fact that S, does not use the nearest data, namely Wjil,,, 
and Wjy,,, . In this sense S, is not a regular nine-point scheme. 

There is also a possibility to consider a regular nine-point version of the original 
two-step method, namely the scheme S, (see [12]) 
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It turns out that the stability condition for this scheme, S, , is given (with AB = BA) 
by 

x < l/tiZu, (20) 

and r = 8 per net point. It will be demonstrated later that S, produces errors 
much smaller than S, . 

For the hydrodynamic equations where AB f BA the allowed time steps are 
given by 

x < l/id2 (I v I + 41 for S, 

and (21) 

x < l/Cl v I + 4 for S, , 

where c is the sound speed and V the fluid velocity (see [7] and [12]). 

OPTIMAL-STABILITY SCHEMES 

Second-order accurate schemes with optimal stability for solving two- 
dimensional systems were proposed by Strang [9, lo], and multistep formulations 
for these schemes were constructed by Gourlay and Morris [4,5]. These schemes are 

and 
s5 = 1/W,L, + -&Lx) (22) 

s6 = Ld4,i2 or S,’ = L,l&Lvia 9 (23) 

where L, is a one-dimensional Lax-Wendroff operator in the x direction and L, 
in the y direction. The stability condition is ha < 1 which is optimal for explicit 
schemes. S, even allows a time step according to h < min[2/p(A); l/p(B)] and this 
is of course an advantage especially when p(A) is considerably larger than p(B), 
however, it should be remembered that S, uses also WiY2,, . Similar results hold 
for S,‘. 

As pointed out by Burstein [l], the Strang schemes have built-in “mixed 
stabilizers” which allow for the optimal stable h. S, , for example, has a built-in 
mixed stabilizer containing (12) together with the even term 

((&)4/8) (A2B2 + B2A2) W,,,, . 

The mixed stabilizer built-in S, is more complicated and includes terms with 
(dt)5 and (dt)‘j. 

The simplicity of these schemes, in the sense of Strang, is represented by the 
fact that Y = 16 for S, and r = 12 for S, , with the Gourlay-Morris formulation. 
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It is interesting to note that Gourlay and Morris [S], found a ratio of nearly 413 
for the real computing times of S, and S, and that this is also the ratio of the 
corresponding r’s. The real time ratio is influenced, of course, by the programming 
technique and by the specific computer used, but in general we see that r/A is 
indeed a rough first estimate for a typical computing time. 

The last scheme we would like to include in our comparison is influenced by 
the fact that the original Richtmyer scheme, S, , produces results of second-order 
accuracy only every second time step, i.e., after 8 evaluations of F and G. This 
scheme is also generated as a result of the disappointing results that the com- 
pounded S, scheme yielded in some cases (see [5]). This last scheme, S, , is a 
Strang-type scheme with optimal stability producing second-order results only 
every second time step, namely, we operate with L,L, and then with L,L, and 
so on, alternatively2 (see [3]). The scheme S, computes F and G 8 times per dt 
and has r,‘h = 80, where again the Gourlay-Morris formulation should be used. 

NUMERICAL RESULTS 

In order to test and demonstrate the effects of the stabilizers and the simplicity 
of the schemes on the real computing time, we first examined the nonlinear 
equation 

ut + (U3/3)Z + (cV5)y = 0 (24) 
with initial data U(0, X, y) = (x + y)li2 

in the region 0 < t < t*, 1 < x, y < 2, We did not use the square 0 < x, y < 1, 
because we preferred the relative and the absolute errors to be approximately of 
the same magnitude. The analytic solution of (24) is 

u = {(1/2t)[((l + t)2 + 4t(x + y))“” - (1 + t)]}l’” (25) 

enabling us to compute a table of the errors for each time step for each scheme. 
The boundary values are taken from the exact solution. In a scalar case like (24) 
we have ur = a2 < cr. As a yardstick we used the Lax-Wendroff scheme and fixed 
t* so that S, will run for a thousand seconds producing errors as small as 10-6. 
It turned out that h = l/40 was the right grid for S, in order to have the above 
mentioned errors; these same t* and h were used for all the other schemes except 
for S, where a finer grid (d = l/60) had to be used since the errors were very much 
larger than Lax-Wendroff’s. The programming took into account that there is no 
memory space for storing F and G for all net points at each cycle. 

“S, is similar to the method of fractional time steps given by Marchuk in the SYNSPADE 
1970 Proceedings, page 478. 
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The results of the numerical solutions of problem (24) are given in Table I 
below, where the real computing times are for advancing the solution up to t*. 
The grid size is taken as h = l/40 except for the fourth run where h = l/60 is 
used. The dt’s are taken to be the maximal stable time steps at each cycle for each 
scheme. 

Similar results were obtained for other problems. As a second example we took 
the equation U, + (I!Y~/~)~ + (U2/2), = 0 where u1 = u2 = u and where the 
solution for the initial data (x + y)‘i2 is U = (P + x + y)riz - t. The results 
showed again that S, has by far larger errors than all the other schemes which 
for h = l/40 had errors of ~10-~. 

The reason for this lies, probably, in the boundary treatment as well as in the 
“diamond-shaped” numerical domain of dependence. When using S, it seems 
that we do not have second-order accuracy near the boundaries. This is not the 
case in all the other schemes tested here, i.e., S, is much more sensitive to boundary 
effects. It is true that more appropriate treatment of the boundaries is possible 
pointed out by Gourlay and Morris [5], on the other hand, however, this sensitivity 
of S, is a serious disadvantage in practical calculations. 

In hydrodynamical computations, for example, when calculating flows around 
bodies, boundary values are usually imposed on the body surface. 

The advantage of S, over S, in this sense is interesting when observing that 
S, is a regular nine-point scheme which does not need boundary values at 
intermediate stages. When taking S, with the exact solution on a double boundary 
without using boundaries in the intermediate stages (usually, this cannot be 
achieved), the accuracy turned out to be as good as with S, . 

The results of the second example are given in Table II. 

TABLE II 

(0 = 01 = o2 

Scheme s, & & & s.5 & ST 

Real time in set 1000 152 139 200 259 207 140 

Typical errors -10-G -10-G -10-S -10-G -10-G -10-6 -10-B 

As Richtmyer pointed out [7], it is enough to use only half the mesh points 
when using S, , but as seen from Table II additional refinement is needed and the 
time is considerably longer than the times for S, and even S, . Our real time ratio 
between S, and S, is near the ratio of the corresponding r’s namely 413, as was 
also found by Gourlay and Morris [5]. In general schemes S, and then S, and S, 
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seem to be fast and accurate at least for problems with smooth solutions; they are 
also easy to program. 

For the hydrodynamic equations in two spatial variables the time steps for 
S, and S, are given by 

A, ci l/yIa&X[lVii i-c] for S, (26) 

and 

b < l/y”m [i v I $- cl for S,, 07) 

where c is the speed of sound and [ vi j the largest component of the particle 
velocity v. If for some time t, the denominator of (27) is maximal at a point where 
the velocity is in the x (or JJ) direction then (26) and (27) yield the same d t, . 

THREE SPATIAL DIMENSIONS 

The Lax-Wendroff scheme with and without even stabilizers can be easily 
extended to the three-dimensional case having stability conditions X < l/(3 2/3 0) 
and h < l/(34, respectively (see [1 11). 

Richtmyer’s two-step method (with h < l/30,) and its more compact version 
(with h < l/d/3 ol) can also be given for three dimensions (see [8, 2, 121). In the 
class of optimal-stability methods (see [5, 31) the extended S, scheme seems to be 
the fastest as pointed out by Gottlieb (scheme L, in [3]); i.e., use for example 
L,L,L; at odd time cycles and L,L,L, at even ones. This last scheme has r/h = 120 
and it is practical and efficient to use, at least when smooth solutions are involved. 

A great deal of work is still to be done in handling multidimensional shock- 
wave like discontinuities. For treating shocks it is desirable to have a simple 
smoothing operator that will act automatically only near discontinuities without 
being enormously complicated and time consuming. For schemes like S, , S, and 
S, such smoothing operators can be introduced one-dimensionally into L, , L, 
and L,, as pointed out by Strang [lo]. We hope to report on results in this 
direction in the near future. 
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