Numerical Stabilizers and Computing Time for Second-Order Accurate Schemes*

B. Eilon, D. Gottlieb, and G. Zwas
Department of Mathematical Sciences, Tel-Aviv University, Israel

Received May 17, 1971

Abstract

This paper deals with explicit second-order accurate schemes for solving quasilinear hyperbolic equations with two spatial dimensions. The effect of certain stabilizing terms that allow a larger time step is studied and numerical examples are given, taking into account the simplicity of the schemes so as to shorten the actual computing time.

Intronuction ${ }^{1}$

The numerical solution of nonlinear initial value problems in more than one spatial dimension can cause severe problems of computing time, especially if second-order accuracy is desired.

We will first deal with hyperbolic systems of the form

$$
\begin{equation*}
W_{t}=A \cdot W_{x}+B \cdot W_{y}, \tag{1}
\end{equation*}
$$

where A and B depend on the components of W so that

$$
\begin{equation*}
A(W) W_{x} \equiv F_{x}, \quad B(W) W_{y} \equiv G_{y} ; \tag{2}
\end{equation*}
$$

in other words (1) is a system of conservation laws. The equations of compressible fluid dynamics are an example for such a system. When examining linear stability A and B will be taken as constant matrices. We will assume that A and B can be symmetrized by the same similarity transformation so that our system (1) is guaranteed to be hyperbolic.

- The basic explicit second-order accuracy scheme for solving (1) with given

[^0](C) 1972 by Academic Press, Inc.
initial data is the Lax-Wendroff method [6]. This method uses the fact that (1) and (2) lead to
\[

$$
\begin{equation*}
W_{i t}=\left[A\left(F_{x}+G_{y}\right)\right]_{x} \mid\left[B\left(F_{x} \mid G_{y}\right)\right]_{y} \tag{3}
\end{equation*}
$$

\]

The Lax-Wendroff scheme will be denoted by S_{1}, namely,

$$
\begin{equation*}
W_{j, m}^{n+1}=S_{1} W_{j, m}^{n} \tag{4}
\end{equation*}
$$

where $W_{j, m}^{n}=W\left(t_{n}, x_{j}, y_{m}\right)$. Using the notations

$$
\sigma=\text { largest eigenvalue of } A \text { or } B
$$

$$
\lambda=\Delta t / h
$$

and taking $\quad h=\Delta x=\Delta y$,
the stability requirement for S_{1} is given [6] by,

$$
\begin{equation*}
\lambda \leqslant 1 / \sigma \sqrt{8} \tag{5}
\end{equation*}
$$

In the special case where A and B commute, σ_{1} replaces σ in (5) where

$$
\begin{equation*}
\sigma_{1}=\max _{i}\left[\left(a_{i}^{2}+b_{i}^{2}\right) / 2\right]^{1 / 2} \tag{6}
\end{equation*}
$$

and where a_{i} and b_{i} are the corresponding eigenvalues of A and B. We will refer in some cases to the situation where $A B=B A$ knowing fully well that we lose generality but on the other hand we gain easier insight into the problems since we are able to apply the spectral mapping theorem.

We will also use the notation

$$
\sigma_{2}=\left[\frac{1}{2} \rho\left(A^{2}+B^{2}\right)\right]^{1 / 2}
$$

where $\rho(A)$ and $\rho(B)$ are the spectral radii of A and B, and where, obviously, $\sigma_{1} \leqslant \sigma_{2} \leqslant \sigma$.

In addition to the maximal stable λ we will be interested in a simplicity number r, denoting the number of times that the functions F and G are computed for each net point. This number r is indeed some measure of the simplicity of a scheme, as pointed out by Strang [10], since F and G can be complicated computationally and since the quantity r / λ turns out to be significant as far as computing time is concerned. For the Lax-Wendroff scheme, S_{1}, the number r is at least 15 (scalar case) and $(9+6 p)$ for a system of p equations. This is so because six matrix evaluations are needed in S_{1}, and for a system of order p, such a matrix computation is roughly equivalent to p evaluations of the vector functions F or G.

Even Stabilizers

In their paper [6], Lax and Wendroff suggested adding to their scheme a stabilizing term which is the centered finite-difference representation of

$$
\begin{equation*}
-\left(\lambda^{2} / 8\right) h^{4}\left(A^{2}+B^{2}\right) W_{x x y y} \tag{7}
\end{equation*}
$$

This term allows a larger time step so that only

$$
\begin{equation*}
\lambda \leqslant\left[1 / 2 \sigma_{2}\right] \tag{8}
\end{equation*}
$$

is required for linear stability, namely a gain of at least $\sqrt{2}$ in Δt is achieved. Here again σ_{1} can replace σ_{2} if A and B commute. We will refer to terms like (7) as "even stabilizers" since they use derivatives of even orders, hence contributing only to the real part of the corresponding amplification matrix G. The scheme S_{1} combined with (7) will be denoted by S_{2}. The corresponding amplification matrices are (see [6]),

$$
\begin{align*}
G_{1}= & I|i \lambda(A \sin \xi \mid B \sin \eta)| \lambda^{2}\left[A^{2}(\cos \xi 1) \vdash B^{2}(\cos \eta-1)\right. \\
& -1 / 2(A B+B A) \sin \xi \sin \eta], \tag{9}\\
G_{2}= & G_{1}-1 / 2\left(A^{2}+B^{2}\right)(1-\cos \xi)(1-\cos \eta) \lambda^{4} .
\end{align*}
$$

Here A and B were taken to be locally constant and ξ and η are the dual variables after the usual Fourier transform. It should be noted that the stabilizer (7) uses only the same nine points that were already used by S_{1}.

Let us now take the special case where $A B=B A$. By the spectral mapping theorem the eigenvalues of G_{1} and G_{2}, i.e., g_{1} and g_{2}, are given by

$$
\begin{align*}
g_{1}= & \left\{1-\lambda^{2}\left[(1-\cos \xi) a^{2}+(1-\cos \eta) b^{2}+\frac{a b+b a}{2} \sin \xi \sin \eta\right]\right\} \\
& +i \lambda\{a \sin \xi+b \sin \eta\}, \tag{10}\\
g_{2}= & g_{1}-1 / 2\left(a^{2}+b^{2}\right)(1-\cos \xi)(1-\cos \eta) \lambda^{4},
\end{align*}
$$

where a and b are corresponding eigenvalues of A and B. In order to meet the well-known Von-Neumann condition we must impose $\left|g_{1}\right|^{2} \leqslant 1$ and $\left|g_{2}\right|^{2} \leqslant 1$ for all $|\xi| ;|\eta| \leqslant \pi$. Now we observe that inequality

$$
\left\{I_{M}\left[g_{1}\right]\right\}^{2}=\lambda^{2}\{a \sin \xi+b \sin \eta\}^{2} \leqslant 1 \quad(|\xi| ;|\eta| \leqslant \pi)
$$

leads already to the stability requirement (8) with σ_{1} replacing σ_{2}. Consequently, since even stabilizers contribute only to the real part of the amplification matrix, we see that in a sense (7) is an optimal even stabilizer for S_{1}. In order to further stabilize the Lax-Wendroff scheme, "odd stabilizers" are needed.

Odd Stabilizers

If we take only the real part of the amplification matrix G_{1} and impose the Von-Neumann condition, we find for the case where A and B commute,

$$
\begin{equation*}
\lambda \leqslant 1 / \sqrt{2} \sigma_{1} . \tag{11}
\end{equation*}
$$

This means that an odd stabilizer that will yield the stability condition (11) when added to S_{1}, is an optimal odd stabilizer in the above mentioned sense.

We now claim that the centered finite-difference representation of

$$
\begin{equation*}
\left(\lambda^{3} / 4\right) h^{3}\left[\left(A B^{2}+B^{2} A\right) W_{x y y}+\left(B A^{2}+A^{2} B\right) W_{y x x}\right] \tag{12}
\end{equation*}
$$

is such an optimal odd stabilizer.
We start the proof by observing that (12) does not damage the second-order accuracy and that the scheme S_{2} with (12) as a stabilizer is again a regular ninepoint scheme.

Now since (12) adds the term

$$
\begin{equation*}
-(i / 2) \lambda^{3}\left[\left(A B^{2}+B^{2} A\right) \sin \xi(1-\cos \eta)+\left(B A^{2}+A^{2} B\right) \sin \eta(1-\cos \xi)\right] \tag{13}
\end{equation*}
$$

to G_{1}, we obtain for the Von-Neumann requirement the inequality,

$$
\begin{align*}
& 4 c^{2}\{\alpha \sqrt{[\beta(1-\beta)]}+c \beta \sqrt{[\alpha(1-\alpha)]}\}^{2} \mu^{2} \\
& \quad+\left[4 c^{2} \alpha^{2} \beta^{2}+\left(\alpha-c^{2} \beta\right)^{2}\right] \mu-\left[\alpha^{2}+c^{2} \beta^{2}\right] \leqslant 0, \tag{14}
\end{align*}
$$

where

$$
\begin{array}{ll}
\alpha=\sin ^{2}(\xi / 2) ; & \beta=\sin ^{2}(\eta / 2) \\
c=b / a ; & \mu=\lambda^{2} a^{2} .
\end{array}
$$

Again, we have assumed $A B=B A$ so that the spectral-mapping theorem could be applied.

Inequality (14) is a convex parabola in μ having real roots of opposite signs and we want to show that for $\mu_{0}=1 /\left(1+c^{2}\right)$ the inequality still holds for all α; $\beta \in[0 ; 1]$.

Substitution of μ_{0} in (14) leads to

$$
\begin{equation*}
[(\alpha+\beta) / 2]^{2}\left(1+c^{2}\right) \geqslant \alpha \beta\left\{\alpha+c^{2} \beta+2 c[\alpha \beta(1-\alpha)(1-\beta)]^{1 / 2}\right\} \tag{15}
\end{equation*}
$$

and of course it is enough to show that (15) holds for all $\alpha ; \beta \in[0 ; 1]$ if ($\alpha \beta$) replaces $[(\alpha+\beta) / 2]^{2}$ on the left-hand side.

We are now left with the inequality

$$
\begin{equation*}
(1-\beta) c^{2}-2[\alpha \beta(1-\alpha)(1-\beta)]^{1 / 2} c+(1-\alpha) \geqslant 0 \tag{16}
\end{equation*}
$$

which is easily seen to be true for every real c and all $\alpha ; \beta \in[0 ; 1]$, leading finally to the stability criteria (11) as claimed. The hyperbolicity of our system of equations guarantees that c is real.

We do not suggest the stabilizer (13) for practical computations but we feel it clarifies the role of stabilizing terms at least for second-order accurate schemes.

Two-Step Schemes

Since our main interest is shortening the real computing time we next mention the two step schemes, first suggested by Richtmeyer [7]. These schemes do not perform any matrix calculations for the case of conservation laws and are therefore considerably faster. In [7] Richtmyer gives the following scheme

$$
\begin{align*}
& W_{j, m}^{n+1}=\check{W}_{j, m}^{n}+(\lambda / 2)\left(F_{j+1, m}^{n}-F_{j-1, m}^{n}\right)+(\lambda / 2)\left(G_{j, m+1}^{n}-G_{j, m-1}^{n}\right), \tag{17}\\
& W_{j, m}^{n+2}=W_{j, m}^{n}+\lambda\left(F_{j+1, m}^{n+1}-F_{j-1, m}^{n+1}\right)+\lambda\left(G_{j, m+1}^{n+1}-G_{j, m-1}^{n+1}\right),
\end{align*}
$$

where

$$
\widetilde{W}_{j, m}^{n}=1 / 4\left(W_{j+1, m}^{n}+W_{j-1, m}^{n}+W_{j, m+\mathbf{1}}^{n}+W_{j, m-1}^{n}\right) ;
$$

the stability condition (for the case $A B=B A$) is

$$
\begin{equation*}
\lambda \leqslant 1 / 2 \sigma_{1} . \tag{18}
\end{equation*}
$$

Scheme (17), which will be denoted by S_{3}, advances the time by $2 \Delta t$ while computing F and G only 8 times (i.e., $r=4$ per Δt). However, as will be seen later, in order to get results as accurate as with S_{1} or S_{2} it is necessary to take a finer mesh. The reason for this is probably the "diamond-shaped" numerical domain of dependence and the fact that S_{3} does not use the nearest data, namely $W_{j \pm 1, m}$ and $W_{j, m \pm 1}^{n}$. In this sense S_{3} is not a regular nine-point scheme.

There is also a possibility to consider a regular nine-point version of the original two-step method, namely the scheme S_{4} (see [12])

$$
\begin{align*}
W_{j+1 / 2, m+1 / 2}^{n+1 / 2}= & \tilde{W}_{j+1 / 2, m+1 / 2}^{n}+(\lambda / 2)\left(\hat{F}_{j+1, m+1 / 2}^{n}-\hat{F}_{j, m+1 / 2}^{n}\right) \\
& +(\lambda / 2)\left(\hat{G}_{j+1 / 2, m+1}^{n}-G_{j+1 / 2, m}^{n}\right), \tag{19}\\
W_{j, m}^{n+1}= & W_{j, m}^{n}+\lambda\left(\hat{F}_{j+1 / 2, m}^{n+1 / 2}-\hat{F}_{j-1 / 2, m}^{n+1 / 2}\right)+\lambda\left(\hat{G}_{j, m+1 / 2}^{n+1 / 2}-\hat{G}_{j, m-1 / 2}^{n+1 / 2}\right),
\end{align*}
$$

where

$$
\begin{aligned}
\tilde{W}_{j+1 / 2, m+1 / 2}^{n} & =1 / 4\left(W_{j+1, m+1}^{n}+W_{j+1, m}^{n}+W_{j, m+1}^{n}+W_{j, m}^{n}\right), \\
\hat{F}_{j+1, m+1 / 2}^{n} & =F\left(\left(W_{j+1, m+1}^{n}+W_{j+1, m}^{n}\right) / 2\right), \quad \text { etc. }
\end{aligned}
$$

It turns out that the stability condition for this scheme, S_{4}, is given (with $A B=B A$) by

$$
\begin{equation*}
\lambda \leqslant 1 / \sqrt{2} \sigma_{1} \tag{20}
\end{equation*}
$$

and $r=8$ per net point. It will be demonstrated later that S_{4} produces errors much smaller than S_{3}.

For the hydrodynamic equations where $A B \neq B A$ the allowed time steps are given by

$$
\lambda \leqslant 1 /[\sqrt{2}(|\mathbf{V}|+c)] \quad \text { for } \quad S_{3}
$$

and

$$
\begin{equation*}
\lambda \leqslant 1 /(|\mathbf{V}|+c) \quad \text { for } \quad S_{4} \tag{21}
\end{equation*}
$$

where c is the sound speed and \mathbf{V} the fluid velocity (see [7] and [12]).

Optimal-Stability Schemes

Second-order accurate schemes with optimal stability for solving twodimensional systems were proposed by Strang [9, 10], and multistep formulations for these schemes were constructed by Gourlay and Morris [4, 5]. These schemes are

$$
\begin{equation*}
S_{5}=1 / 2\left(L_{x} L_{y}+L_{y} L_{x}\right) \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{6}=L_{x / 2} L_{y} L_{x / 2} \quad \text { or } \quad S_{6}^{\prime}=L_{y / 2} L_{x} L_{y / 2}, \tag{23}
\end{equation*}
$$

where L_{x} is a one-dimensional Lax-Wendroff operator in the x direction and L_{y} in the y direction. The stability condition is $\lambda \sigma \leqslant 1$ which is optimal for explicit schemes. S_{6} even allows a time step according to $\lambda \leqslant \min [2 / \rho(A) ; 1 / \rho(B)]$ and this is of course an advantage especially when $\rho(A)$ is considerably larger than $\rho(B)$, however, it should be remembered that S_{6} uses also $W_{j \pm 2, m}^{n}$. Similar results hold for $S_{6}{ }^{\prime}$.

As pointed out by Burstein [1], the Strang schemes have built-in "mixed stabilizers" which allow for the optimal stable $\lambda . S_{5}$, for example, has a built-in mixed stabilizer containing (12) together with the even term

$$
\left((\Delta t)^{4} / 8\right)\left(A^{2} B^{2}+B^{2} A^{2}\right) W_{x x y y} .
$$

The mixed stabilizer built-in S_{6} is more complicated and includes terms with $(\Delta t)^{5}$ and $(\Delta t)^{6}$.
The simplicity of these schemes, in the sense of Strang, is represented by the fact that $r=16$ for S_{5} and $r=12$ for S_{6}, with the Gourlay-Morris formulation.

It is interesting to note that Gourlay and Morris [5], found a ratio of nearly $4 / 3$ for the real computing times of S_{5} and S_{6} and that this is also the ratio of the corresponding r 's. The real time ratio is influenced, of course, by the programming technique and by the specific computer used, but in general we see that r / λ is indeed a rough first estimate for a typical computing time.

The last scheme we would like to include in our comparison is influenced by the fact that the original Richtmyer scheme, S_{3}, produces results of second-order accuracy only every second time step, i.e., after 8 evaluations of F and G. This scheme is also generated as a result of the disappointing results that the compounded S_{6} scheme yielded in some cases (see [5]). This last scheme, S_{7}, is a Strang-type scheme with optimal stability producing second-order results only every second time step, namely, we operate with $L_{x} L_{y}$ and then with $L_{y} L_{x}$ and so on, alternatively ${ }^{2}$ (see [3]). The scheme S_{7} computes F and $G 8$ times per Δt and has $r / \lambda=8 \sigma$, where again the Gourlay-Morris formulation should be used.

Numerical Results

In order to test and demonstrate the effects of the stabilizers and the simplicity of the schemes on the real computing time, we first examined the nonlinear equation

$$
\begin{align*}
& \quad U_{t}+\left(U^{3} / 3\right)_{x}+\left(U^{5} / 5\right)_{y}=0 \tag{24}\\
& \text { with initial data } U(0, x, y)=(x+y)^{1 / 2}
\end{align*}
$$

in the region $0 \leqslant t \leqslant t^{*}, 1 \leqslant x, y \leqslant 2$. We did not use the square $0 \leqslant x, y \leqslant 1$, because we preferred the relative and the absolute errors to be approximately of the same magnitude. The analytic solution of (24) is

$$
\begin{equation*}
U=\left\{(1 / 2 t)\left[\left((1+t)^{2} \mid 4 t(x+y)\right)^{1 / 2}-(1+t)\right]\right\}^{1 / 2} \tag{25}
\end{equation*}
$$

enabling us to compute a table of the errors for each time step for each scheme. The boundary values are taken from the exact solution. In a scalar case like (24) we have $\sigma_{1}=\sigma_{2}<\sigma$. As a yardstick we used the Lax-Wendroff scheme and fixed t^{*} so that S_{1} will run for a thousand seconds producing errors as small as 10^{-6}. It turned out that $h=1 / 40$ was the right grid for S_{1} in order to have the above mentioned errors; these same t^{*} and h were used for all the other schemes except for S_{3} where a finer grid $(d=1 / 60)$ had to be used since the errors were very much larger than Lax-Wendroff's. The programming took into account that there is no memory space for storing F and G for all net points at each cycle.

[^1]TABLE I

N°	Scheme	Type of scheme	Real time in sec	r / λ	Most of the errors	Maximal error	Remarks

The results of the numerical solutions of problem (24) are given in Table I below, where the real computing times are for advancing the solution up to t^{*}. The grid size is taken as $h=1 / 40$ except for the fourth run where $h=1 / 60$ is used. The Δt 's are taken to be the maximal stable time steps at each cycle for each scheme.

Similar results were obtained for other problems. As a second example we took the equation $U_{t}+\left(U^{2} / 2\right)_{x}+\left(U^{2} / 2\right)_{y}=0$ where $\sigma_{1}=\sigma_{2}=\sigma$ and where the solution for the initial data $(x+y)^{1 / 2}$ is $U=\left(t^{2}+x+y\right)^{1 / 2}-t$. The results showed again that S_{3} has by far larger errors than all the other schemes which for $h=1 / 40$ had errors of $\sim 10^{-6}$.

The reason for this lies, probably, in the boundary treatment as well as in the "diamond-shaped" numerical domain of dependence. When using S_{3} it seems that we do not have second-order accuracy near the boundaries. This is not the case in all the other schemes tested here, i.e., S_{3} is much more sensitive to boundary effects. It is true that more appropriate treatment of the boundaries is possible pointed out by Gourlay and Morris [5], on the other hand, however, this sensitivity of S_{3} is a serious disadvantage in practical calculations.

In hydrodynamical computations, for example, when calculating flows around bodies, boundary values are usually imposed on the body surface.

The advantage of S_{4} over S_{3} in this sense is interesting when observing that S_{4} is a regular nine-point scheme which does not need boundary values at intermediate stages. When taking S_{3} with the exact solution on a double boundary without using boundaries in the intermediate stages (usually, this cannot be achieved), the accuracy turned out to be as good as with S_{4}.

The results of the second example are given in Table II.

TABLE II

$$
\left(\sigma=\sigma_{1}=\sigma_{2}\right.
$$

Scheme	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	S_{6}	S_{7}
Real time in sec	1000	752	139	200	259	207	140
Typical errors	$\sim 10^{-6}$	$\sim 10^{-6}$	$\sim 10^{-5}$	$\sim 10^{-6}$	$\sim 10^{-6}$	$\sim 10^{-6}$	$\sim 10^{-6}$

As Richtmyer pointed out [7], it is enough to use only half the mesh points when using S_{3}, but as seen from Table II additional refinement is needed and the time is considerably longer than the times for S_{7} and even S_{4}. Our real time ratio between S_{5} and S_{6} is near the ratio of the corresponding r 's namely $4 / 3$, as was also found by Gourlay and Morris [5]. In general schemes S_{7} and then S_{4} and S_{6}
seem to be fast and accurate at least for problems with smooth solutions; they are also easy to program.

For the hydrodynamic equations in two spatial variables the time steps for S_{7} and S_{4} are given by

$$
\begin{equation*}
\lambda_{n} \leqslant 1 / \max _{j, m}\left[\left|v_{i}\right|+c\right] \quad \text { for } S_{7} \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{n} \leqslant 1 / \max _{j, m}[|\mathbf{v}|+c] \quad \text { for } \quad S_{4}, \tag{27}
\end{equation*}
$$

where c is the speed of sound and $\left|v_{i}\right|$ the largest component of the particle velocity \mathbf{v}. If for some time t_{n} the denominator of (27) is maximal at a point where the velocity is in the x (or y) direction then (26) and (27) yield the same Δt_{n}.

Three Spatial Dimensions

The Lax-Wendroff scheme with and without even stabilizers can be easily extended to the three-dimensional case having stability conditions $\lambda \leqslant 1 /(3 \sqrt{3} \sigma)$ and $\lambda \leqslant 1 /\left(3 \sigma_{2}\right)$, respectively (see [11]).

Richtmyer's two-step method (with $\lambda \leqslant 1 / 3 \sigma_{1}$) and its more compact version (with $\lambda \leqslant 1 / \sqrt{3} \sigma_{1}$) can also be given for three dimensions (see $[8,2,12]$). In the class of optimal-stability methods (see [5,3]) the extended S_{7} scheme seems to be the fastest as pointed out by Gottlieb (scheme L_{7} in [3]); i.e., use for example $L_{x} L_{y} L_{z}$ at odd time cycles and $L_{z} L_{y} L_{x}$ at even ones. This last scheme has $r / \lambda=12 \sigma$ and it is practical and efficient to use, at least when smooth solutions are involved.

A great deal of work is still to be done in handling multidimensional shockwave like discontinuities. For treating shocks it is desirable to have a simple smoothing operator that will act automatically only near discontinuities without being enormously complicated and time consuming. For schemes like S_{5}, S_{6} and S_{7} such smoothing operators can be introduced one-dimensionally into L_{x}, L_{y} and L_{z}, as pointed out by Strang [10]. We hope to report on results in this direction in the near future.

References

1. S. Z. Burstein, Numerical methods in multidimensional shocked flows, AIAA J. 2 (1964), 2111-2117.
2. B. Eilon, A note concerning the two step Lax-Wendroff method in three dimensions, to appear in Math. of Comp., also TAU Math. report MS-7014.
3. D. Gottueb, Strang type difference schemes for multidimensional problems, to appear in SIAM Journal on Num. Anal.
4. A. R. Gourlay and J. L. Morris, A multistep formulation of the optimized Lax-Wendroff method for nonlinear hyperbolic systems in two space variables, Math. Comp. 22 (1968), 715-719.
5. A. R. Gourlay and J. L. Morris, On the comparison of multistep formulations of the optimized Lax-Wendroff method for nonlinear hyperbolic systems in two space variables, Comp. Phys. 5 (1970), 229-243.
6. P. D. Lax and B. Wendroff, Difference schemes for hyperbolic equations with high order of accuracy, Comm. Pure Appl. Math. 17 (1964), 381-398.
7. R. D. Richtmyer, "A survey of difference methods for nonsteady fluid dynamics," N.C.A.R. Tech. Notes 63-2, 1963.
8. E. L. Rubin and S. Preiser, Three dimensional second order difference schemes for discontinuous flows, Math. Comp. 24 (1970), 57-63.
9. G. Strang, Accurate partial difference methods-nonlinear problems, Numer. Math. 13 (1964), 37-46.
10. G. Strang, On the construction and comparison of difference schemes, SIAM J. Numer. Anal. 5 (1968), 506-517.
11. G. Zwas, Stability conditions for three dimensional Lax-Wendroff schemes, to appear, TAU Math. Report.
12. G. Zwas, On two step Lax-Wendroff methods in several dimensions, to appear.

[^0]: * This research has been sponsored in part by the Air Force Office of Scientific Research (NAM) through the European Office of Aerospace Research AFSC, U. S. Aire Force, under contract F611052-69-C-0041.
 ${ }^{1}$ The computations reported herein were carried out on the CDC- 6600 computer at the Tel-Aviv University Computation Center.

[^1]: ${ }^{2} S_{7}$ is similar to the method of fractional time steps given by Marchuk in the SYNSPADE 1970 Proceedings, page 478.

